Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Dan Li, ${ }^{\text {a }}{ }^{*}$ Tao Wu^{a} and Seik Weng $\mathbf{N g}^{\text {b }}$

${ }^{\text {a }}$ Department of Chemistry, Shantou University, Shantou, Guangdong 515063, People's
Republic of China, and ${ }^{\mathbf{b}}$ Department of
Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia

Correspondence e-mail: dli@stu.edu.cn

Key indicators
Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.012 \AA$
R factor $=0.038$
$w R$ factor $=0.092$
Data-to-parameter ratio $=16.4$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

(2-Methylbenzimidazolyl- κN)(triphenyl-phosphine- κ P)gold(I) hemihydrate

The Au^{I} atom in the title compound, $\left[\mathrm{Au}\left(\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{~N}_{2}\right)\right.$ $\left.\left(\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{P}\right)\right] \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$, shows a linear coordination. The tertiary N atom of the anionic group interacts with the uncoordinated water molecule, which lies on a twofold axis.

Comment

An earlier study provided details of the crystal structure of the 1/1 benzimidazolylgold(I) adduct with triphenylphosphine, whose metal atom shows linear coordination $[\mathrm{Au}-\mathrm{N}=$ 2.022 (5) \AA and $\mathrm{Au}-\mathrm{P}=2.232$ (2) $\AA ; \mathrm{N}-\mathrm{Au}-\mathrm{P}=179.6$ (1) ${ }^{\circ}$] (Li et al., 2004). In the title compound, (I), the introduction of a methyl substituent in the anion leads to only minor changes in the bond dimensions of the Au^{I} atom, as shown in Fig. 1 and Table 1. The 180° angle in the unsubstituted adduct is reduced to 175.3 (2) ${ }^{\circ}$ in the methyl-substituted adduct; the decrease can be attributed to the steric bulk of the methyl group. The non-coordinated atom N2 engages in hydrogen bonding with the uncoordinated water molecule, forming a hydrogenbonded assembly of two complexes and one water molecule (Table 2).

Experimental

To a solution of chloro(triphenylphosphine)gold ($0.99 \mathrm{~g}, 2.0 \mathrm{mmol}$) and 2-methylbenzimidazole ($0.27 \mathrm{~g}, 2.0 \mathrm{mmol}$) in acetone (20 ml) was added 1 M sodium hydroxide (2 ml). The solution was stirred for 2 h ; the precipitated sodium chloride was removed and the filtrate concentrated to give a colorless compound that was recrystallized from dichloromethane (10 ml). Prismatic crystals were obtained by diffusing diethyl ether into a dichloromethane solution of the compound; the yield was about 75%. CHN elemental analysis calculated for $\mathrm{C}_{26} \mathrm{H}_{23} \mathrm{AuN}_{2} \mathrm{O}_{0.5} \mathrm{P}$: C 52.09, H 3.76, N 4.67%; found: C 52.10, H 3.87, N 4.67%. IR (KBr)/cm ${ }^{-1}: 3424$ (m), 3052 (w), 2914
 (m), $759(s), 742(s), 699(s), 540(s), 510(m)$.

Crystal data

$\left[\mathrm{Au}\left(\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{~N}_{2}\right)\left(\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{P}\right)\right] \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$	Mo $K \alpha$ radiation
$M_{r}=599.40$	Cell parameters from 4375
Orthorhombic, P Pccn	reflections
$a=26.2518(9) \AA$	$\theta=2.6-25.1^{\circ}$
$b=9.3899(4) \AA$	$\mu=6.54 \mathrm{~mm}^{-1}$
$c=18.4960(6) \AA$	$T=293(2) \mathrm{K}$
$V=4559.3(3) \AA^{3}$	Block, colorless
$Z=8$	$0.40 \times 0.30 \times 0.20 \mathrm{~mm}$
$D_{x}=1.746 \mathrm{Mg} \mathrm{m}^{-3}$	

Received 26 April 2004 Accepted 27 April 2004 Online 8 May 2004

Data collection

Bruker SMART area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan (SADABS; Bruker, 1999)
$T_{\text {min }}=0.137, T_{\max }=0.270$
10540 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.038$
$w R\left(F^{2}\right)=0.092$
$S=0.99$
4010 reflections
245 parameters

4010 independent reflections
2733 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.040$
$\theta_{\text {max }}=25.1^{\circ}$
$h=-21 \rightarrow 31$
$k=-7 \rightarrow 11$
$l=-21 \rightarrow 21$

H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0473 P)^{2}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.001$
$\Delta \rho_{\text {max }}=0.95 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\min }=-1.65 \mathrm{e}^{-3}$

Table 1
Selected geometric parameters $\left(\AA{ }^{\circ},{ }^{\circ}\right)$.

$\mathrm{Au} 1-\mathrm{N} 1$	$2.025(5)$	$\mathrm{Au} 1-\mathrm{P} 1$	$2.238(2)$
$\mathrm{N} 1-\mathrm{Au} 1-\mathrm{P} 1$	$175.3(2)$		

Table 2
Hydrogen-bonding geometry $\left(\AA,{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1-\mathrm{H} 1 \cdots \mathrm{~N} 2$	$0.82(8)$	$2.09(8)$	$2.894(8)$	$168(9)$

The phenyl rings of the triphenylphosphine ligand were refined as rigid hexagons $(\mathrm{C}-\mathrm{C}=1.39 \AA)$. The H atoms were placed at calculated positions [aromatic $\mathrm{C}-\mathrm{H}=0.93 \AA$ and methyl $\mathrm{C}-\mathrm{H}=$ $\left.0.96 \AA ; U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})\right]$ and were included in the refinement in the riding-model approximation. The torsion angle of the methyl group was refined. The H atom belonging to the water O atom was located and refined freely.

Figure 1
ORTEPII (Johnson, 1976) plot of the title compound (I), showing the atom-numbering scheme and displacement ellipsoids drawn at the 50% probability level.

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

We thank the National Natural Science Foundation of China (Nos. 20271031 and 29901004), the Natural Science Foundation of Guangdong Province (No. 021240) and the University of Malaya for supporting this study.

References

Bruker (1999). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Li, D., Wu, Tao \& Ng, S. W. (2004). Acta Cryst. E60, m399-m400.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

